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Abstract: In this study, a decision-making workflow to design and optimize
parameters of polymer flooding is put forward. This technological process is divided into
three phases. The first phase is to design five-parameter and five-level orthogonal
experiments (OED). The second is to systematically evaluate experiment results by
mathematical method principal component analysis (PCA) based on ten subfactors from
three aspects, including injection effect, development effect and economic benefits. The
third is to analyze sensitivity by range analysis (RA) based on the comprehensive
evaluation result and then obtain optimized parameters. Finally, the parameter
optimization in Xinjiang reservoir is performed through this workflow.

1. Introduction

Polymer flooding technology is an effective method to improve oil recovery in water-flooding
oilfield, and its role in oilfield development is paid more and more attention (A. Kumar Sinha et al.,
2015). In the design of the polymer flooding scheme, it is necessary to select a polymer scheme
suitable for the reservoir conditions (Jianian Xu, et al., 2018). Badar Al-Shakry et al. (2018)
optimized the injection by analyzing the injectivity of polymer solution. Ali Bengar et al. (2017)
empolyed ANOVA and tornado charts to study the important parameters of polymer flooding after
determining the main effects and interaction, and then chose three factors in oil production.
However, these methods are either unable to analyze the correlation between parameters, or the
number of experimental samples is too large to analyze one by one. In the evaluation of the effect of
polymer flooding, traditional methods are mainly focused on oil production or economy viability
only because the two objectives can be conflicting and not easy to balance. Peerapong Ekkawong et.
(2017) utilized the concept of Pareto optimality to generate a set of Pareto optimal solutions. Yanbin
Wang. (2014) proposed an approach for evaluation of polymer flooding potential during oil
reservoir development, which integrated orthogonal design and BP artificial network. These
methods can only consider few evaluation indexes and are not able to achieve comprehensive
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evaluation on the development effect of polymer flooding. In this study, the orthogonal experiment
is designed to synchronously analyze the effect of every injection parameter. In the aspect of
development performance, we choose principal component analysis (PCA), which enable to assess
more indexes and avoid the risk of expert decision. In addition, the range analysis is employed to
quantify the sensitivity of parameters and get the optimal combination of injection parameters. The
entire approach aims to minimize the risk of manual decision making to some extent and obtain the
best decision-making plan.

2. OED-PCA-RA METHOD

A complex and systematic structure of the method is represented by a diagram in Figure 1. And the
method is briefly described.

Figure 1: Generalized framework for parameters optimization and comprehensive assessment
through the approach using OED-PCA-RA analysis.

OED Method: The OED is a method mainly to study the experimental design with multiple
factors and levels, which was put forward by the famous Japanese statistician Genichi Taguchi. The
method is to select some representative points to carry out the test from the comprehensive test
based on orthogonality, these representative points have the characteristics of “uniform dispersion,
homogeneous and comparable”. OED is not only the main method of fractional factorial design but
also an efficient, rapid and economical experimental design method (Yanbin Wang et al. 2014).
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Taking the three-factor and three-level experiment as an example, in order to conduct a
comprehensive experiment, it is necessary to design 3×3×3=27 groups of experiments. While only 9
groups of experiments need to be designed if considering orthogonal experiment, which not only
greatly reduces the workload, but also analyzes the influence of all factors on the test results.

PCA: Principal component analysis (PCA) is a mathematical dimensionality reduction method,
which is designed to calculate the overall effects by finding a way to recombine the original
numerous variables with certain correlation into a new set of independent comprehensive variables
(Put forward by Karl Pearson). In general, the Mathematical treatment is to make linear
combinations of the original variables as the new synthesis variables. However, if such
combinations are not restricted, there may be a large number of combinations, which make it
difficult to choose. If label the first linear combination (also known as the first synthetic variable)
we pick as F1, we naturally want it to reflect as much information as possible about the original
variable. Here, “information” is measured by variance. That is, the Var (F1) should be as large as
possible, and contains more information. Therefore, F1 should have the largest variance among all
linear combinations, so F1 is called the first principal component. If the first principal component is
insufficient to represent the information of p variables, then F2, the second linear combination, is
selected. In order to effectively reflect the original information, the existing information of F1 does
not need to appear in F2, which is expressed in mathematical language to require cov (F1, F2) =0
and called F2 as the second principal component. In the same way, the third, fourth... p principal
components are obtained. Note: cov represents covariance in statistics. Last the new data of each
factor under each principal component, namely the score of principal components, can be obtained
according to the original standardized data and the main component expressions of each sample
(Hyungsik Jung et al. 2018).

RA: The range analysis, also known as the R method, includes two steps of calculation and
judgment. In the process of range analysis, K(Nm) is the total mark of parameter N at m level, and
k(Nm) is the average value of K(Nm). The optimal level of parameters and the optimal combination
of all parameters can be judged by the size of k value. The size of R(N) reflects the variation of the
test mark when the parameter N takes different values. The larger the value is, the greater the
influence of the parameter on the test mark is. Therefore, the less it can be ignored of higher R in
the subsequent experimental design because of its greater sensitivity (Zikang Xiao et al. 2019).

3. Polymer Injection Decision-Making Work Flow

3.1.The OED Process

There are five main injection parameters for polymer solution: polymer solution concentration,
polymer injection volume, injection speed, injection timing and polymer molecular weight
respectively (Qing You et al., 2019). They are denoted as five parameters in the orthogonal test. For
each parameter, different values can be set, denoted as level values. In order to ensure the accuracy
and comprehensiveness of the results, we set five levels, which are recorded as five-factor,
five-level orthogonal experiment. To quantify the value of parameters and then pick the level, we
select a well group in Xinjiang oilfield. The basic data of this well group are shown in Table 1.
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Table 1: Basic data of the well group.

Objects Values Unites
The depth of oil reservoir 1150 m

Temperature of oil
reservoir 39 ℃

Reservoir water salinity 28860 mg/L
Rock compressibility 0.0003 1/Bars
Average porosity 0.13 dimensionless

Average permeability 155 mD
Oil viscosity 34 cp

Variation coefficient of K 0.48 dimensionless
Well pattern Five-point dimensionless

Current water cut 61% dimensionless
It is a conglomerate reservoir with strong stratigraphic heterogeneity and undeveloped fractures.

At present, the oilfield has entered the stage of high water cut development, with low water flooding
recovery rate, so it is urgent to carry out polymer flooding test.

When the ratio of polymer molecular size to pore throat radius of reservoir rock is above five,
the polymer and rock pore have a good match (Gu Hongjun et al. 2016). For this reason, the
molecular weight range of polymers we picked is set at 15m-27m. And some relevant parameters on
polymer solution are obtained through laboratory experiments, as shown in Figure 2, which are
essential parameters for subsequent numerical simulation.

(a) (b)

Figure 2: a. Viscosity - concentration curves of polymer solution under different molecular weight;
b. The relationship of core resistance coefficient (RC) and residual resistance coefficient (RRC)

with molecular weight of polymer under different rock permeability.

Based on the theory of OED, five factors and five levels of orthogonal experiment are designed,
the specific information is listed in the Table 2.
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Table 2: The final design results based on the principle of orthogonal test.

Plan A
(mg/L)

B
(PV)

C
(PV/a)

D
(fw)

E
(million)

1 1000 0.2 0.12 0.65 15

2 1000 0.4 0.15 0.72 18

3 1000 0.6 0.18 0.79 21

4 1000 0.8 0.21 0.86 24

5 1000 1 0.24 0.9 27

6 1200 0.2 0.15 0.79 24

7 1200 0.4 0.18 0.86 27

8 1200 0.6 0.21 0.9 15

9 1200 0.8 0.24 0.65 18

10 1200 1 0.12 0.72 21

11 1400 0.2 0.18 0.9 18

12 1400 0.4 0.21 0.65 21

13 1400 0.6 0.24 0.72 24

14 1400 0.8 0.12 0.79 27

15 1400 1 0.15 0.86 15

16 1600 0.2 0.21 0.72 27

17 1600 0.4 0.24 0.79 15

18 1600 0.6 0.12 0.86 18

19 1600 0.8 0.15 0.9 21

20 1600 1 0.18 0.65 24

21 1800 0.2 0.24 0.86 21

22 1800 0.4 0.12 0.9 24

23 1800 0.6 0.15 0.65 27

24 1800 0.8 0.18 0.72 15

3.2.The PCA Process

Conventional evaluation methods often list the development effects of individual major factors
(such as oil production, water cut), which usually lead to incomplete evaluation results and cannot
truly and effectively reflect the development effects. Hence, we consider three aspects from
injection effect, development effect and economic benefits of well group to systematically and
comprehensively evaluate the overall performance.
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3.2.1.The Definition of Subfactors

Each factor is further divided into corresponding subfactors. The definitions of all subfactors are in
Table 3. This is vital to obtain effective information during the evaluation.

Table 3 The specific definitions of all subfactors.

3.2.2.The Evaluation Process of PCA

All the plans are numerically simulated for 15 years. Table 4 shows the result of the whole
subfactors.
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Table 4: Detailed numerical simulation results of all the plans. The unit of Sub(a), Sub(b), Sub(c),
Sub(f), Sub(g), Sub(h) is dimensionless, the unit of Sub(c), Sub(d) is the month, the unit of Sub(i) is

the year and the unit of Sub(j) is the million.

After obtaining all the subfactors, we then use PCA to comprehensively and systematically
evaluate the development effect of polymer flooding. The comprehensive evaluation results are
calculated using the following process.

(1) Standardize the raw data by Z-score method; (2) Calculate the correlation coefficient matrix
R based on the data obtained in step 1; (3) Calculate the eigenvalues and eigenvectors of the
correlation coefficient matrix R; (4) Calculate the contribution rate bj and cumulative contribution
rate cp of characteristic values; (5) Calculate comprehensive score. The cumulative contribution rate
of the first four eigenvalues is nearly 90%, so we select them as principal components, and
construct the comprehensive evaluation model Y with the contribution rates as weight.

1 2 3 40.501 0.210 0.102 0.082Y y y y y    (1)

3.3.The RA Process

3.3.1.The Basic Theory of RA

When considering a certain factor, the range analysis (RA) considers that the influence of other
factors on the result is balanced, and it is considered that the difference in the level of the factor is
caused by the factor itself. Analysis of orthogonal test results by the RA should lead to the
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following conclusions.
(1) The sensitivity of the experimental parameters to the results; (2) The best suitable operating

conditions and suitable level for the test parameters.

3.3.2.Parameter Optimization and Sensitivity Evaluation

We calculate the K, k and R value of the five parameters based on RA theory, which is listed in
Table 5.

Table 5: The K / k values at different levels for different parameters. k1A is the average value of
K1A.

Parameters A B C D E
K1 -5.09 -6.02 -3.30 -2.23 -0.81
K2 -3.63 -1.85 -0.72 -0.60 -0.81
K3 1.17 2.05 1.19 -0.38 0.23
K4 4.16 3.42 1.79 1.74 0.91
K5 3.39 2.40 1.05 1.47 0.48
k1 -1.02 -1.20 -0.66 -0.45 -0.16
k2 -0.73 -0.37 -0.14 -0.12 -0.16
k3 0.23 0.41 0.24 -0.08 0.05
k4 0.83 0.68 0.36 0.35 0.18
k5 0.68 0.48 0.21 0.29 0.10
R 1.85 1.89 1.02 0.79 0.26

The relative size of full range R and the effect of each level on the experimental results are
shown in Figure 3.

Figure 3: a. The sensitivity value R of parameters; b. and the trend of levels for parameter A to E.

Three conclusions can be made:
(1) The range RB＞RA＞RC＞RD＞RE, as shown in Figure 3a, which means polymer injection

volume and solution concentration are more sensitive in overall development effect.
(2) The effect of parameter A, B, C, E rises with their level change (Figure 3b), and each of them

reaches a peak in this process, then sees a decrease afterward. The effect of parameter D increases
as the level grows, but the growth trend is less significant.

(3) Based on the analysis and results above, the appropriate ranges of injection parameters for
polymer flooding in this well group are obtained. In this well group, the optimized polymer solution
concentration and molecular weight are 1550-1650mg/L and 22-24 million, the appropriate
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parameters of polymer injection volume and speed are 0.7-0.8PV and 0.20-0.22PV/a respectively,
and when the fw is higher than 80% and lower than 85%, the development effect is the best.

4. Conclusion

A comprehensive evaluation system of ten indicators is successfully established to assess the
performance of polymer flooding. According to the distribution of principal components, the
cumulative contribution rates of the first four reached 90%, indicating that this method is applicable
to the evaluation system.

The optimal values of parameters are obtained through OED-PCA-RA method, which enable to
achieve better development effect and provide a reference for polymer development oilfield to
realize high efficiency polymer flooding development.

This workflow provided in this study can also applied in parameter optimization in other
domains by designing different orthogonal experiments and changing the evaluation factors.
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